Complexity Measures: Fractal Methods

Chung-Kang Peng, PhD
Beth Israel Deaconess Medical Center
Harvard Medical School
Different Roles of HRV

- To measure physiologic aspects of autonomic control
- To quantify statistical features of time series
- To characterize the dynamical properties of the underlying control systems
Healthy Dynamics: Multi-scale, Long-range Order

Pathologic Breakdown of Fractal Dynamics

Single Scale

Uncorrelated Randomness
Objectives

• To introduce the concept of fractals for spatial and temporal structures
• To introduce two simple measurements of fractal objects and processes
• To discuss clinical implications of fractal dynamics in heart rate time series
What is Fractal?

A fractal object is *self-similar*, i.e., small subsets of the object resemble (statistically) the whole. Fractal objects do not possess a characteristic (single) spatial and temporal scale.
Fractals Everywhere

- Spatial structures: tree, lung, coral, …
- Temporal dynamics: weather temperature, music, volatility of stock prices, …
- Symbolic sequences: DNA, computer codes, …
Fractal Self-Organization: Purkinje Cells in Cerebellum
Quantifying fractal with fractal dimension or self-similarity parameter

• Fractal dimension is more suitable to describe how a geometrical object fills up the space from small to large scales

• Self-similarity parameter can be used to quantify fractal processes (time series)
Example 1: Box counting method to measure fractal dimension
Measuring Coastline
Measuring the length of a coastline

\[\text{Length} = N(L) \times L \]

\(N(50) = 12 \)

\(N(25) = 26 \)
$L = \text{size of ruler or grid}$

$N = \text{number laid down}$
$N = 1180.93L^{-1.19}$

$L = \text{size of ruler or grid}$

$N = \text{number laid down}$
Example 2: Detrended fluctuation analysis (DFA) to measure a self-similarity parameter of fractal processes
Peng et al. Chaos 1995: 5; 82.
> 500 citations
(a) DFA Analysis

- Healthy subject, $\alpha=1.04$
- Randomized control, $\alpha=0.51$
Application to Framingham Heart Study

Ho, Moody, Peng, Mietus, Larson, Levy, Goldberger.
Circulation 1997; 96: 842-848
Ho, Moody, Peng, Mietus, Larson, Levy, Goldberger.

Circulation 1997; 96: 842-848
Fractal Correlation Properties of R-R Interval Dynamics and Mortality in Patients With Depressed Left Ventricular Function After an Acute Myocardial Infarction

Heikki V. Huikuri, MD; Timo H. Mäkilä, MD; Chung-Kang Peng, PhD; Ary L. Goldberger, MD; Ulrik Hintze, MD; Mogens Møller, MD; for the DIAMOND Study Group

Background—Preliminary data suggest that the analysis of R-R interval variability by fractal analysis methods may provide clinically useful information on patients with heart failure. The purpose of this study was to compare the prognostic power of new fractal and traditional measures of R-R interval variability as predictors of death after acute myocardial infarction.

Methods and Results—Time and frequency domain heart rate (HR) variability measures, along with short- and long-term correlation (fractal) properties of R-R intervals (exponents \(\alpha_1 \) and \(\alpha_2 \)) and power-law scaling of the power spectra (exponent \(\beta \)), were assessed from 24-hour Holter recordings in 446 survivors of acute myocardial infarction with a depressed left ventricular function (ejection fraction \(\leq 35\% \)). During a mean ± SD follow-up period of 685 ± 360 days, 114 patients died (25.6%), with 75 deaths classified as arrhythmic (17.0%) and 28 as nonarrhythmic (6.3%) cardiac deaths. Several traditional and fractal measures of R-R interval variability were significant univariate predictors of all-cause mortality. Reduced short-term scaling exponent \(\alpha_1 \) was the most powerful R-R interval variability measure as a predictor of all-cause mortality (relative risk 3.0, 95% confidence interval 2.5 to 4.2, \(P < 0.001 \)). It remained an independent predictor of death (\(P < 0.001 \)) after adjustment for other postinfarction risk markers, such as age, ejection fraction, NYHA class, and medication. Reduced \(\alpha_1 \) predicted both arrhythmic death (\(P < 0.001 \)) and nonarrhythmic cardiac death (\(P < 0.001 \)).

Conclusions—Analysis of the fractal characteristics of short-term R-R interval dynamics yields more powerful prognostic information than the traditional measures of HR variability among patients with depressed left ventricular function after an acute myocardial infarction. (Circulation. 2000;101:47-53.)

Key Words: mortality ■ heart rate ■ infarction
“The fractal organization of human HR dynamics is determined by a delicate interplay between sympathetic and vagal outflow, with the breakdown of fractal HR behavior toward more random dynamics occurring during coactivation of sympathetic and vagal outflow.”

A Brief Overview of Multifractal Time Series

Luis Amaral

In the Exploring Patterns in Nature tutorials, we observed how disordered, irregular, fractal patterns can be quantified in terms of their spatial fractal dimension. Here we study fractal (and multifractal) patterns of a different sort: patterns in time.

This overview attempts to give a short operational review of multifractality in time series. For this reason, formal definitions and derivations are not discussed; see Refs. 1-4 for more in-depth reviews.

- Part 1: Fractal behavior in time series
- Part 2: Using wavelets to detect singular behavior
- Part 3: The fractal dimension of the singular behavior
- Part 4: The singularity spectra of multifractal signals
- Part 5: What one learns from the singularity spectra of multifractal signals
- Part 6: Multifractality of healthy human heart rate
- Bibliography

Software for multifractal analysis of time series is available here.
Analyzed Signal

Values of Ca, b Coefficients for \(s = [1:1:100] \) — Coloration mode: lin it + by scale + abs

Scale of colors from MIN to MAX
Conclusions

- Heart rate time series exhibit fractal (self-similar) properties
- We can quantify the exponents of fractal scaling
- These exponents are altered in disease and aging