Heart Rate Variability in Heart Failure and Sudden Death

Phyllis K. Stein, PhD
Washington University School of Medicine
St. Louis, MO
Outline

• Effect of erratic rhythm and sinus bigemeny on HRV.
• Traditional, non-linear HRV and heart rate turbulence and outcome in CHF.
• Traditional, non-linear HRV and heart rate turbulence and sudden death.
Erratic Rhythm Confounds HRV
Background

Decreased HRV is associated with increased mortality

• In cardiac patients
• In population studies
 (e.g., Framingham, Cardiovascular Health Study)
Therefore

decreased HRV is bad

increased HRV is good.
Evidence to the Contrary

Zutphen Study

HRV from 25-30-s strips from resting 12-lead ECGs

5-year, age-adjusted risk of mortality for low HRV 2.1 in middle-aged and 1.4 in elderly men.

Higher HRV in older men did not appear to reflect RSA, and associated with increased mortality.

Confounders and Caveats for HRV and Autonomic Function

• HRV may not be meaningful in patients with a high degree of non-respiratory sinus arrhythmia (Erratic Sinus Rhythm).

• Associated with abnormal-looking, blurred power spectral plot

• Often episodic. High prevalence exaggerates HRV

• Abnormal respiration may also produce abnormal plots and exaggerated HRV
Randomness vs. RSA
10-Min Heart Rate Tachograms

Heart Rate Tachogram for SCD Case

Heart Rate Tachogram for Control
Randomness vs. RSA
One Hour Power Spectral Plots

Abnormal FFT for SCD case

Normal FFT for Control
Poincare Plot to Measure SD12 of N-N Intervals
Randomness vs. RSA
Hourly Poincaré Plots

Poincaré plot for SCD case

Poincaré plot for control
Cardiovascular Health Study (CHS) Holter Cohort

- Age > 65 yrs.
- Followed 1988-2002
- N = 1429 Holter recordings at yr2 and N = 864 at yr7 in same cohort.
- N = 385 Holter recordings at yr7 in new African American cohort.
Comparison of Normal and Highly Abnormal 2-min Averaged Hourly FFT Plots (CHS)
Normal-Appearing Hourly Scatterplots (CHS)
Abnormal (Complex) Hourly Scatterplots From the CHS
Distribution of Abnormality Scores in the CHS

Stein et al., JCE;16:954-9:2005
Effect of Abnormality Score on pNN625 in the CHS

Stein et al., JCE;16:954-9:2005
Comparison of 24-Hour Frequency Domain and Non-Linear HRV for Subjects Above (N=63) and Below (N=198) the Cutpoint for Markedly Increased Short-term HRV in the CHS.

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln TP</td>
<td>9.40 (<) 0.71</td>
<td>9.57 (<) 0.04</td>
<td>0.086</td>
</tr>
<tr>
<td>Ln ULF</td>
<td>9.24 (<) 0.71</td>
<td>9.45 (<) 0.04</td>
<td>0.012</td>
</tr>
<tr>
<td>Ln VLF</td>
<td>6.81 (<) 0.82</td>
<td>6.88 (<) 0.04</td>
<td>0.501</td>
</tr>
<tr>
<td>LF/HF Ratio</td>
<td>2.48 (<) 1.73</td>
<td>4.70 (<) 0.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Ln LF</td>
<td>5.92 (<) 1.00</td>
<td>5.79 (<) 0.05</td>
<td>0.338</td>
</tr>
<tr>
<td>Ln HF</td>
<td>5.52 (<) 1.21</td>
<td>4.59 (<) 0.06</td>
<td><0.001</td>
</tr>
<tr>
<td>Norm LF</td>
<td>39.2 (<) 9.1</td>
<td>48.0 (<) 0.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Norm HF</td>
<td>28.3 (<) 9.0</td>
<td>17.0 (<) 0.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Power Law Slope</td>
<td>-1.291 (<) 0.126</td>
<td>-1.318 (<) 0.009</td>
<td>0.154</td>
</tr>
<tr>
<td>Alpha1</td>
<td>0.83 (<) 0.18</td>
<td>1.09 (<) 0.01</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Stein et al., JCE;16:954-9:2005
“Sinus” Bigemeney Confounds HRV
HRV and Erratic Rhythm

- Accurate measurement of HRV depends on research quality scanning.
- Erratic rhythm and sinus bigeminy elevate short-term “vagal” HRV.
- Non-linear indices, decreased a_1, increased SD12 reflect erratic rhythm.
- Decreased LF/HF ratio may reflect erratic rhythm.
HRV and Erratic Rhythm

- Longer-term HRV least confounded by erratic rhythm and sinus bigemeny.
- Best predictors may be SDANN and ULF, because beat-to-beat changes in HRV are not included.
- SDANN <100 ms shown to risk stratify in CHF with AF.¹

HRV in Heart Failure
HRV and Mode of Death in Heart Failure

- HRV may provide different information in ischemic vs. idiopathic etiologies.
- Different risk factors for pump failure vs. sudden death.
- Pump failure more “expected.”
- Sudden death often occurs in patients with better preserved ventricular function.
HRV and All-Cause Mortality in Ischemic Heart Failure

• Generally same results are HRV in post-MI patients.
• Studies often overlap because higher-risk patients recruited for trials.
• In most studies, decreased longer-term HRV adds to predictive value of clinical and demographic risk factors for pump failure only.
Effect of Diabetes on HRV in CHF

<table>
<thead>
<tr>
<th></th>
<th>Class II No Diabetes (N=47)</th>
<th>Class II Diabetes (N=40)</th>
<th>Class III No Diabetes (N=32)</th>
<th>Class III Diabetes (N=35)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>68 ±2</td>
<td>72 ±2</td>
<td>75 ±2</td>
<td>76 ±2</td>
<td>0.002</td>
</tr>
<tr>
<td>SDNN (ms)</td>
<td>117 ±6b</td>
<td>92 ±6</td>
<td>91 ±7</td>
<td>92 ±7</td>
<td>0.012</td>
</tr>
<tr>
<td>SDANN (ms)</td>
<td>102 ±5b</td>
<td>80 ±5</td>
<td>77 ±5</td>
<td>79 ±6</td>
<td>0.003</td>
</tr>
<tr>
<td>SDNNIDX (ms)</td>
<td>51 ±4</td>
<td>39 ±4</td>
<td>42 ±5</td>
<td>39 ±5</td>
<td>0.183</td>
</tr>
<tr>
<td>rMSSD (ms)</td>
<td>33 ±5</td>
<td>31 ±6</td>
<td>35 ±6</td>
<td>36 ±6</td>
<td>0.908</td>
</tr>
<tr>
<td>pNN50 (%)</td>
<td>9.3 ±1.7</td>
<td>7.6 ±1.8</td>
<td>8.1 ±1.9</td>
<td>7.8 ±1.9</td>
<td>0.911</td>
</tr>
</tbody>
</table>

a Post hoc analysis, significant differences between class II without diabetes and both class III groups (p<0.05).
HRV and Mode of Death in CHF

• N=330 consecutive CHF stable for >2wks.
• Etiology roughly ½ ischemic.
• FU = 3 years.
• HRV predictor of pump failure: Night VLF = 509 ms² (+PWP = 18 mm Hg, LVEF =24%)
• HRV predictor of SCD: LF= 20 ms² (LVESD 61 mm).
• SDNN, power law slope univariate predictors of pump failure/ urgent transplant but not SCD.

Large CHF trials (*Drug Study)

- DIAMOND 1998
- UK-Heart 1993
- Dutch Ibopamine Multicenter Trial* ~1990
- TRACE 1995
- DEFINITE 1998 (ICD study)
- EMIAT* 1990
HRV and Outcome in UK-Heart

HRV and Outcome in CHF (DEFINIT)

Figure 3 Risk stratification for cardiac mortality, implantable cardioverter-defibrillator (ICD) and medical therapy arms combined. SDNN is categorized in tertiles. Patients who were excluded from heart rate variability analysis because of atrial fibrillation (AF) or frequent ventricular ectopy are analyzed in a separate group. Kaplan-Meier curves of event-free survival are shown, truncated at 3 years.

Sudden Cardiac Death
SCD in the Cardiovascular Health Study (CHS)

- SCD matched 1:2 with no SCD on age, gender, beta blocker use and diabetes.
- Controls alive at the time of death of case no subsequent SCD.
- Recording closest to SCD used if possible. Cases and controls matched on recording used (yr2 or yr7).

Stein et al, Presented at ACC 2005
Subjects CHS SCD Study

<table>
<thead>
<tr>
<th></th>
<th>SCD N=52</th>
<th>No SCD N=104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>73.7 ± 5.2</td>
<td>73.8 ± 5.5</td>
</tr>
<tr>
<td>Gender</td>
<td>35M, 17F</td>
<td>70M, 34F</td>
</tr>
<tr>
<td>Years to death</td>
<td>6.2 ± 2.4 (0.15-10.4)</td>
<td>7.9 ± 2.9 (2.6-11.6)</td>
</tr>
<tr>
<td>% mortality</td>
<td>100</td>
<td>48</td>
</tr>
</tbody>
</table>

Stein et al., Presented at ACC, 2005
Results (CHS)-Time Domain HRV

- No difference in heart rate or time domain HRV, except for significant *increase* in rMSSD and pNN50 among SCD cases.

<table>
<thead>
<tr>
<th></th>
<th>No SCD N=104</th>
<th>SCD N=52</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (bpm)</td>
<td>73±11</td>
<td>73±10</td>
<td>NS</td>
</tr>
<tr>
<td>SDNN (ms)</td>
<td>122±39</td>
<td>118±38</td>
<td>NS</td>
</tr>
<tr>
<td>pNN50 (%)</td>
<td>6±8</td>
<td>10±13</td>
<td>0.04</td>
</tr>
<tr>
<td>rMSSD (ms)</td>
<td>27±16</td>
<td>35±28</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Stein et al, Presented at ACC 2005
Results (CHS)- Frequency Domain HRV

No difference in traditional frequency domain HRV (TP, ULF, VLF, LF, HF). Significant differences in ratio indices.

<table>
<thead>
<tr>
<th></th>
<th>No SCD N=99</th>
<th>SCD N=43</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln VLF</td>
<td>6.9±0.7</td>
<td>6.8±0.8</td>
<td>NS</td>
</tr>
<tr>
<td>Norm LF</td>
<td>62±12</td>
<td>56±12</td>
<td>0.02</td>
</tr>
<tr>
<td>Norm HF</td>
<td>24±10</td>
<td>28±10</td>
<td>0.04</td>
</tr>
<tr>
<td>LF/HF</td>
<td>4.3±2.6</td>
<td>3.4±2.2</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Stein et al., Presented at ACC 2005
Results (CHS)-Non-Linear HRV

Short-term fractal scaling exponent [DFA1,(a1)] significantly decreased, SD12 significantly increased among SCD cases.

<table>
<thead>
<tr>
<th></th>
<th>No SCD N=99</th>
<th>SCD N=43</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA1</td>
<td>1.19±0.22</td>
<td>1.06±0.22</td>
<td>0.002</td>
</tr>
<tr>
<td>SD12</td>
<td>0.26±0.11</td>
<td>0.31±0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>Slope</td>
<td>-1.36±0.15</td>
<td>-1.37±0.37</td>
<td>NS</td>
</tr>
</tbody>
</table>

Stein et al., Presented at ACC 2005
Results (CHS)- Heart Rate Turbulence and SCD

- HRT(+), defined as turbulence onset >0 or turbulence slope <2.5.
- HRT(+) more prevalent among SCD.
- 49% of SCD had HRT(+).
- 28% no SCD had HRT(+).

(Unpublished data)
Traditional HRV and Risk of Sudden Cardiac Death

• Since half of cardiac deaths are sudden, assumed that HRV is predictor of SCD.
• Identifying SCD problematic but less so in the ICD era.
• Results contradictory, especially for longer-term HRV.
Non-Linear HRV and Risk of Sudden Cardiac Death

• Results in CHS, Turku, Dutch Ibopamine Multicenter Trial, suggest that abnormal non-linear HRV predicts SCD.

• Identification of abnormal non-linear HRV requires research quality scanning.
Heart Rate Turbulence and Risk of Sudden Cardiac Death

• Abnormal HRT (especially TS) strong predictor of cardiovascular death.
• No clear evidence of strong relationship between HRT and SCD.
Summary

- Erratic rhythm is associated with abnormal non-linear HRV, but elevates some traditional HRV measures.
- Decreased SDNN predicts mortality in CHF.
- Abnormal non-linear HRV may predict sudden death.
Final Thoughts

• Many large Holter datasets available to test HRV and outcome.
• Many fewer datasets with research quality scanning.
• Further studies with more careful data analysis needed to derive usable measures of HRV to risk stratification.