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Abstract

Aim: This study (from Revenger team) aims to de-
velop effective approaches for the detection of cardiac ar-
rhythmias from varying-dimensional electrocardiography
(ECG) in the PhysioNet/Computing in Cardiology Chal-
lenge 2021, taking advantage of both deep neural networks
(DNNs) and insights from clinical diagnostic criteria.

Methods: 26 classes (equivalent classes are counted
one) of ECGs are divided into two categories. Detectors
are manually designed for classes in the category with
clear clinical rules. The rest classes with subtle mor-
phological and spectral characteristics are classified by
DNNs. To make the networks capable of capturing features
of different scopes, we use multi-branch convolutional neu-
ral networks (CNNs), each with different receptive fields
via dilated convolutions. Considering ECGs’ varying di-
mensionality, convolutions are grouped with group num-
ber equaling the number of leads. Outputs from DNNs and
from manual detectors are merged to give final predictions.

Results: Although we did not officially rank (the code
failed to complete on the 12-lead test set), we received test
scores of 0.33, 0.35, 0.33, 0.33, and 0.33 on the 2-lead,
3-lead, 4-lead and 6-lead test sets respectively.

Conclusion: The proposed hybrid method is effective for
establishing auxiliary diagnosis systems, and the reduced-
lead ECGs are sufficient for such systems.

1. Introduction

The electrocardiogram (ECG), a physiological signal re-
flecting the electrical activities of cardiac muscles, is a
major tool for screening and early intervention of cardiac
diseases which is the leading cause of death worldwide
[1]. However, data amount generated by ECG apparatus
are typically large, especially the 24-hour Holter monitors.
Hence accurate automated auxiliary diagnosis systems of
cardiac electrical abnormalities from ECGs is crucial.

The PhysioNet/Computing in Cardiology Challenge
2021 (CinC2021) focused on such mission, or more pre-
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cisely automated, open-source approaches for classifying
cardiac abnormalities from reduced-lead (reduced from the
standard 12-lead) ECGs [2-4]. In this paper, our effort of
tackling this problem, which used DNNs combined with
clinical rules, will be described.

2. Methods

2.1. Partitioning and Selection of Data

Coarsely, the scored ECG arrhythmias of the challenge
can be divided into 2 categories. Most classes (21 classes,
with equivalent classes counted as one) are characterized
by subtle morphological and spectral changes. This ma-
jority of ECG arrhythmias are detected (classified) using
DNNs, which are described in Section The rest 5
(“Brady”, “LAD”, “RAD”, “LQRSV”, “PR”) have clear
and easy-to-describe clinical diagnostic criteria. For these
ECG arrhythmias, manually designed detectors from clin-
ical rules are included as a part of our solution. These de-
tectors are described in more details in Section

Although there are totally 132 classes (abnormalities)
available in the challenge database, only the scored ones
are included for the development of our challenge ap-
proach. ECG records with no scored classes are discarded.
We also exclude the StPetersburg subset (the INCART
dataset [5]]) from training the models for several reasons.
Most importantly, these records are 30 minutes long with
only at most 2 classes of scored abnormalities, which is
too coarse. Second, each of the 9 scored classes consti-
tutes less than 0.2% of the total challenge database, which
is almost neglectable.

2.2.  Preprocess and Data Augmentation

To make training and inference data in better consis-
tency, data are filtered using a Butterworth filter of order
5 and passband 0.5 Hz - 60 Hz, after which baseline wan-
der and high frequency noises are removed. The high cut-
off frequency is slightly higher than usual due to the fact
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that the distinguishing characteristics of the pacing rhythm
(“PR”) are vertical spikes of very short duration.

For training DNNs, the ECGs are resampled to 500 Hz,
cropped or zero-padded to ensure 10-second length (5000
sample points) to utilise mini-batch (parallel) training. In
our approaches, if detection of the class “LQRSV” (low
grs voltages) is not included in the task of CNN models,
the input ECGs are further normalized to have zero mean
and unit variance, since this abnormality is directly related
to absolute values in voltages. To alleviate overfitting, ran-
dom masking [6] with zero values of ECG segments of
length at most 1.0s is adopted. No more augmentations,
like random flip, are done, since they might completely
change the interpretation of the ECGs, as will be seen in
Section To suppress overconfidence which could help
improving generalization capabilities of models, the tech-
nique of label-smoothing regularization (LSR) [[7] is used.
Let y be an one-hot label vector (the “hard” label), then
LSR generates “soft” label vector via Equation ()

1
= 1 — e
Q1-e)y+ Kee
where K is the number of classes, e the K-dimensional
vector with all entries equaling one, and ¢ € [0,1] is a
weight factor. In our approach, we take ¢ = 0.1.

ey

2.3.  Neural Network Architectures

Convolutional Recurrent Neural Networks (CRNNSs).
Inspired by previous work [6,/8]], we build our approach on
top of a CRNN frameworkﬂ The philosophy is as follows.

CNN s consist of space translation equivariant convolu-
tion operators, which usually interleave with non-linear ac-
tivations and downsampling operators capturing and fus-
ing hierarchical local features. In our CRNN framework,
CNN s serve as feature extractors (encoders) from raw in-
put ECGs. In order to better modeling long-range depen-
dency, optional (self-)attention modules (SENet [9]], etc.)
can follow or integrated in building block convolutions in
the CNNs. An optional RNN can be added as well to make
use of sequential information of the ECGs. Feature maps
thus obtained are fed into multilayer perceptrons (MLPs)
for ECG downstream tasks, including classification, se-
quence labeling (e.g. QRS complex detection [8]]), etc.

Multi-branch CNNs. The most significant structures
of ECGs are the P, Q, R, S, T waves and their rhythms
which for example can be reflected by the sequence of
wave intervals (RR intervals, PP intervals, QT intervals,
etc.). Broadly speaking, these waves and intervals broadly
have their “general” spectral characteristics which origi-
nate from the mechanism of the human heart’s electric ac-
tivities. Hence the receptive fields of the CNNss is crucial

lindeed an ECG deep learning framework more broadly, available at
https://github.com/DeepPSP/torch_ecg
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Figure 1. A typical 3-branch CNN. Abbreviations: “Con-
vAct” for grouped convolution layer followed by ReL.U ac-
tivation layer, “GP Norm” for group normalization layer,
“Max Pool” for max pooling layer of kernel size 2. We
set (mp, 1, M,,2,M,,3) = (1,2,3), 4 = 1,2,3, in our
challenge entry approaches. The six convolution layers
of each branch have kernel sizes (11,7,7,5,5,5), and
dilation factors of (1,1,1,1,1,1), (2,2,4,8,8,8), and
(4,4,8,16,32,64) from branch 1 to branch 3. This Ar-
chitecture can shrink or expand horizontally by removing
or adding branches, and shrink or expand vertically by re-
moving or appending convolutions.

for ECGs, or more widely for physiological signal process-
ing. Previous work [8] explicitly models this via multi-
branch CNNs where each branch uses different dilation
factors. Therefore, we mainly experimented with multi-
branch CNNs in our approach.

“Lead-wise” CNNs. The challenge [4] emphasises the
utility of reduced-lead ECGs, hence in our approach we
designed a “lead-wise”” manner for the CNNs via grouped
convolutions with number of groups divisible by the num-
ber of leads of the input ECGs. For example, 12 groups for
the standard 12-lead ECGs. In this “lead-wise” settings,
normalization layers are group normalizations [[10] as well.
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# leads 12 6 4 3 2
np, 1 xConv | 192 | 144 | 96 | 96 64
np,2xConv | 384 | 288 | 192 | 192 | 128
ny, 3xConv | 768 | 576 | 384 | 384 | 256

Table 1. Number of filters for the convolutions in the CNN
described in Figure

separated fused

CNN —— > Attention

MLP Head
feature maps

feature maps

Figure 2. The whole network architecture. CNN is de-
scribed in Figure[I] The attention module used in our ap-
proach is SENet with reduction ratio 8. Then adaptive max
pooling is applied to the fused feature maps to reduce the
number of channels to one. Finally, MLP consisting of
one linear layer gives the predictions which are tensors of
probabilities for each of the classes.

In this way, CNNs extract features for each lead separately
in parallel. Features from different leads are not fused un-
til forwarded out from the CNNs. This provides the pos-
sibility to reuse parameters from the models trained on the
standard 12-lead ECGs for reduced-lead ECGs, in which
case one only needs to “fine-tune” the attention modules
and the MLPs. This can play the role of general-purposed
“backends” as in computer vision. Another advantage is
that “lead-wise”” CNNs are much smaller in the number of
model parameters, with only slight drop of performance.

The major CNN architecture in our challenge entry
approaches is plotted in Figure [I] with number-of-leads-
independent hyperparameters included therein. These hy-
perparameters are inherited from [8]] directly. The number
of filters are listed in Table [1}f| The whole network is gath-
ered in Figure

2.4. Training Setups

Since the challenge data is highly unbalanced, having
a long tail distribution, we thus use weighted binary cross
entropy as the loss function. The weights are inversely pro-
portional to the number of records of the classes. 20% of
the training data is left out for validation and model selec-
tion. We set batch sizes 32 or 64 depending on the model
sizes, and set the maximum number of training epochs to
be 30 with early stopping. Model parameters are optimized
using the AMSGrad variant of the AdamW optimizer [|11]]
with learning rate 0.001. To make binary predictions from
probabilities, a threshold 0.5 is used. If none exceeds 0.5,
then the class with the highest probability and classes with

2Mechanism of reuse of parameters for reduced-lead ECGs has not
been established by the end of the challenge, hence we set this hyper-
parameter for each of the 5 lead sets.

close enough (within a bias of 0.03) probabilities are cho-
sen as the binary output.

2.5. Clinical Rule Based Detectors

Clinical rules based detectors are designed for the 5
ECG abnormalities listed in Section 21l From the au-
thors’ experiences of previous challenges and production
systems, post-processing using clinical rules is an excel-
lent supplement to machine learning models. Details are:
1. “Brady”: average heart rate < 60 BPM (beat per
minute) or equivalently average RR-intervals > 1 second.
2. “LAD” and “RAD: positivity checking of QRS com-
plexes of leads I, aVF (“2-lead” method) as in [|12].

3. “LQRSV”: peak-to-peak amplitudes of more than 80%
of the QRS complexes are < 0.5 mV in the limb leads (I,
IL, III, aVR, aVL, aVF), or < 1 mV in the precordial leads
(V1-V6). If R peak detection fails, amplitude check will
be done within sliding windows of length 0.12 second.

4. “PR”: raw ECGs are high-pass filtered with cutoff fre-
quency 47 Hz, and spike (peak) detection with prominence
threshold of 0.3 follows.

Detection of the first 4 abnormalities relies heavily
on R peak detection, for which we use the function
“xqrs_detect” from the WFDB package [|2,|13|] for simplic-
ity. This function however is far from optimal, causing
miss-classifications. The 5-dimensional outputs and the
21-dimensional outputs from DNNs are naively merged to
produce the final predictions.

3. Results

Our challenge entries mainly uses two configurations,
namely the proposed hybrid method, and the pure DNN
approach. Best scores of challenge entry submissions and
offline experiments are gathered in Table 2]

We carried out offline expriments using CNNs without
the “lead-wise” setting, but no successful entry submission
was made, perhaps due to the increase of model size that
exceed the computation capacity. These ablation studies
results hence are not reported in this paper.

4. Discussion and Conclusions

The hybrid method of DNNs and clinical rules pro-
vides effective approaches for automated auxiliary multi-
lead ECG diagnosis systems. It can be inferred from the
results that reduced-lead ECGs, even 2-lead ECGs in the
extreme case, provide sufficient information for making
reliable auxiliary diagnoses, with performances (challenge
metric) only slightly dropped by at most 0.03, compared to
the standard 12-lead ECGs on the validation set.

There are limitations and left for future work. First, the
multi-branch CNNs for feature extraction are far from op-
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Leads | Training | Validation | Test | Ranking
12 0.62 0.51 | NA NA

6 0.59 0.47 | 0.33 NA

4 0.60 0.47 | 0.35 NA

3 0.61 048 | 0.33 NA

2 0.59 0.48 | 0.33 NA
12-cr 0.64 051 | NA NA
6-cr 0.61 049 | NA NA
4-cr 0.61 044 | NA NA
3-cr 0.61 046 | NA NA
2-cr 0.59 043 | NA NA

Table 2. Challenge scores (top 5 rows) for the final entry.
The final entry used the “no clinical rule” pure DNN ap-
proach. It failed on the 12-lead test set (more exactly the
12-lead “UMich test” set). The auxiliary bottom 5 rows
(with “-cr” suffix) describes performances of our hybrid
approach mixing DNN and clinical rules. Scores in the
“Training” column are typical scores on the 20% left-out
train-validation data, as described in Section[2.4

timal, compared to approach of other challenge teams. Its
structures and hyperparameters both have to be optimized.
A thorough search for more effective architectures should
and is undertaken by the authors in the ECG deep learn-
ing framework mentioned in Section Second, it is ob-
served in Table [2] that performances of the hybrid entries
on the reduced 4-lead, 3-lead and 2-lead ECGs dropped
slightly larger than pure DNN entries. The hyperparam-
eters of clinical rule based detectors are set empirically,
which should be optimized via grid searches. Label het-
erogeneity and insufficiency across datasets should also be
noted. We observed labels that violates clinical criteria,
for example some “LAD” records violates the “3-lead”
method which is more exact than the “2-lead” method
mentioned in Section

Most importantly, the “lead-wise” CNNs provides flex-
ible light weight solutions to reduced-lead ECGs. The
mechanism of parameters reuse is to be further established.
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