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Abstract

The goal of PhysioNet/Computing in Cardiology Chal-
lenge 2021 was to identify clinical diagnoses from 12-lead
and reduced-lead ECG recordings, including 6-lead, 4-
lead, 3-lead, and 2-lead recordings. Our team, snu_adsl,
have used EfficientNet-B3 as the base deep learning model
and have investigated methods including data augmenta-
tion, self-supervised learning as pre-training, label mask-
ing that deals with multiple data sources, threshold opti-
mization, and feature extraction. Self-supervised learning
showed promising results when the size of labeled dataset
was limited, but the competition’s dataset turned out to be
large enough that the actual gain was marginal. In con-
sequence, we did not include self-supervised pre-training
in our final entry. Our classifiers received scores of 0.48,
0.48, 0.47, 0.47, and 0.45 (ranked 12th, 10th, 11th, 11th,
and 13th out of 39 teams) for the 12-lead, 6-lead, 4-lead,
3-lead, and 2-lead versions of the hidden test set with the
Challenge evaluation metric.

1. Introduction

The electrocardiogram (ECG) is an essential tool for
diagnoses of cardiovascular diseases and it is becom-
ing increasingly important as more personal ECG de-
vices become affordable and widely available. The Phy-
sioNet/Computing in Cardiology Challenge 2021 focused
on automated, open-source approaches for classifying car-
diac abnormalities from ECG signals with fewer leads
[[LTH3].

In the deep learning research community, an amazing
progress has been made in the last few years where unla-
beled datasets of image and text were utilized to train a new
generation of models. The most well-known example is

Computing in Cardiology 2021; Vol 48

GPT-3 that can produce smooth writings that are indistin-
guishable from human’s writings. The subsequent exam-
ple is DALL-E. For all these models, self-supervised learn-
ing plays the key role for learning representations. Self-
supervised learning is an unsupervised learning method
where unlabeled datasets are used for training. We have
tried applying self-supervised techniques (e.g. [4]) specifi-
cally for learning representations of ECG signals. We used
the competition datasets in an unsupervised manner for
training models first, and then fine-tuned the models in a
supervised manner. While promising results were obtained
in the research phase, the actual application turned out to
be marginally helpful for the challenge because of the suf-
ficiently large size of the labeled dataset and the computa-
tional limitation.

2. Methods

While our main research goal was to focus on the appli-
cation of self-supervised learning to learn effective ECG
representations, we have also investigated several other as-
pects for enhancing the performance and the main tech-
niques are described in this section. We have decided to
develop a single model based on 6-lead because the per-
formance was not significantly dependent on the number
of leads. The comparable performance indicates that the
extra information within 12-lead signal is limited for the
multi-label classification tasks.

2.1. Dataset

The challenge dataset for the PhysioNet/CinC challenge
2021 consists of 131,155 12-lead ECG recordings of dif-
ferent lengths and frequencies, labeled with one or more of
distinct 133 classes [2,(3]]. Only 30 of the classes were con-
sidered in the challenge evaluation, where some of them
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Figure 1.

were grouped into single classes.

2.2.  Pre-processing

All ECG signals were resampled to 300Hz. We ap-
plied a Butterworth bandpass filter with 1Hz-45Hz fre-
quency. We also applied standardization to each record-
ing. The standardization did not necessarily improve the
performance, but we have kept it on in case the unseen
dataset has unexpected characteristics. To handle ECG sig-
nals with different lengths, we selected a random window
with a width of 4,000 data points which corresponds to
13.3 seconds. ECG signals shorter than 13.3 seconds were
zero-padded at the end.

2.3. Feature extraction

We adopted ten features for the supervised learning -
age, sex, mean and standard deviation of RR interval,
RMSSD (root mean square of successive difference) of RR
interval, mean of R-peak value, RMSSD of R-peak value,
mean, minimum, and maximum of heart rate. Age was
scaled down by 100 and the missing values were replaced
with the average. Sex was one-hot encoded, and missing
values were handled by a dummy variable (one when miss-
ing, zero otherwise). R-peak related features were com-
puted with neurokit2 python package [5]. We extracted
R-peaks from lead II, and lead I was used instead in case
of an error. If the error occurred on both leads, we imputed
the missing values to —1 and used dummy variables to in-
dicate the missing value. Heart rate was calculated based
on R-peaks and it was scaled down by 100.

2.4. Deep learning models

We have chosen EfficientNet-B3 as the competition
model. For research and development, we have also
utilized ResNet-34. ResNet-34 performed worse than
EfficientNet-B3, but it is a lighter model that requires less
time for training. We trained EfficientNet-B3 with Adam
optimizer with an initial learning rate of 0.001. The model
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Data augmentation schemes.

was trained for 30 epochs with a batch size of 64. The
learning rate was reduced by one-tenth in the 7", 14™, and
25" epochs.

2.5. Data augmentation

Augmentation is a cheap and popular method for in-
creasing the size of the dataset. If properly designed, ro-
bustness of the classification can be improved as well. We
have studied jittering, scaling, Gaussian blur, cutout (time
out) [6], baseline shift, baseline wander, and powerline
noise [7] as the possible augmentation schemes (see Figure

[I). Among them, we have chosen only cutout and Gaus-

sian blur schemes in our best entry. Each scheme was ap-
plied with the probability of p = 0.25, respectively.

2.6. Label masking

While the essential characteristics might remain simi-
lar over all the databases, the label availability of each
class was dependent on the database. For instance, CPSC
has 1,221 positive samples for atrial fibrillation (AF) but
Ningbo has 0. There are at least three possible explana-
tions. First, AF individuals were excluded at the time of
data collection. Second, individuals with positive AF were
excluded at the time of database generation. Third, AF in-
dividuals were present but AF was simply not labeled. For
the first two cases, the negative labels can be considered to
be correct because the individuals in the databases were not
diagnosed of AF. For the third case, however, the database
should not be regarded as full of negative labels for AF but
should be regarded as no examination of AF label.

To prevent undesired effects of the third case, we have
identified the classes with zero positive count in each
database and performed masking. For database d and
its class ¢, the training loss [4(x;,7;) was masked as
m? - 14(z;,y;) where m¢ = 0 if class ¢ has zero positive
count. For other classes with non-zero positive counts, mg
was set as 1. The same masking was also applied for val-
idation and testing by multiplying model’s prediction by
the mask value.
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Figure 2. Self-supervised learning where ¢(-) is a random
augmentation function that generates two distorted signals
that are semantically equivalent, f(-) is an encoding net-
work that will be pre-trained in an unsupervised manner
and later be fine-tuned to the ECG classification tasks in
a supervised manner, and ¢(-) is a projection network that
maps the high dimensional representation vector h; into
the low dimensional vector z;.

To apply proper masking at the test time, we had to dis-
tinguish databases where a sample in the test set comes
from. When we develop our methods, we come up with
two simple rules for distinguishing the samples of CPSC,
G12EC, and the undisclosed American database. Both
CPSC and G12EC have a 500Hz sampling rate, while
the undisclosed American database has a 300Hz sampling
rate. The mean values of each lead’s recording are typi-
cally in [-0.5, 0.5] for CPSC, but not for G12EC. However,
the UMich database is additionally used as test data in this
year’s challenge, and our label masking strategy was not
appropriately applied during the final test time.

2.7.  Threshold optimization

Our multi-label classification model outputs a real val-
ued score p € (0,1) for each class, and the classification
threshold was optimized for each individual class. We ex-
amined threshold candidates between 0.1 and 0.7 with the
step size of 0.05. The threshold was individually optimized
using a surrogate metric of F1 score. For submission, we
have used the average threshold values of seven experi-
ments.

2.8. Self-supervised learning

In our study, we have adopted the recent contrastive
learning approach in [4]. The self-supervised method was
shown to be capable of learning effective representations
from unlabeled datasets only. When the self-supervised
model is fine-tuned with a labeled dataset of a small size,
the resulting model’s performance was on par with a fully
supervised model that was trained with a labeled dataset of
a large size.

The key assumption of the self-supervised learning is
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Figure 3. Challenge metric on local validation set with
and without pre-training (6-lead). Only a subset of the
samples was assumed to have label information available.
The usefulness of self-supervised pre-training decreases as
the label ratio (number of labeled samples / number of all
samples) increases.

that randomly augmented views of the same sample should
have the same semantic content as long as the augmenta-
tion functions are carefully designed to preserve the se-
mantic information. Based on the assumption, learning is
performed as shown in Figure 2| In our ECG study, we
have used all of the seven augmentation schemes described
in Section [2.5|as possible random augmentations, and ¢(-)
randomly applied one or two of the seven augmentations
for each input following RandAugment [8] implementa-
tion.

As for the loss that is used for comparing z; and z;, we
have used the following NT-Xent loss [4] that explicitly
pushes away two representations from two different indi-
viduals (negative pair, (¢, k)) and pulls together two repre-
sentations from a single individual with random augmen-
tations (positive pair, (i, 7)).

exp(sim(z;, z;)/T)

ZiJL Lyziexp(sim(z;, z;)/T)

lij=~—

Figure [3] shows the experiment results. We pre-trained
the encoding network (ResNet-34) and projection net-
work (two-layer MLP with batch normalization) using
self-supervised learning. Then, we replaced the projec-
tion network with a linear classifier and fine-tuned the
model with the labeled samples. It can be seen that self-
supervised learning as a pre-training is very helpful when
label ratio is low. The advantage, however, fades away as
the portion of labeled samples increase. Therefore, our fi-
nal challenge entry did not utilize self-supervised learning.
Self-supervised learning should be helpful when the size
of labeled dataset is smaller or when there is an additional
unlabeled dataset of a large size.

3. Results

Ablation study results using training data can be found
in Tablem All of augmentation, feature extraction, and la-
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Category Methods Challenge metric
Base model - 0.666 £ 0.002
None 0.661 £ 0.003
Augmentation | Cutout only 0.666 £ 0.002
Gaussian blur only 0.664 £ 0.003
Feature None 0.665 £ 0.003
Age/sex only 0.661 + 0.001
None 0.641 £ 0.002
Label masking | Training only 0.649 £ 0.003
Training and validation only 0.649 + 0.004
None 0.644 £ 0.001
Pre-processing | Filtering only 0.672 + 0.005
Standardization only 0.667 £ 0.005

Table 1. Ablation study results for 6-lead experiments
using training data.

Leads Training Validation | Test | Ranking
12 | 0.675 £ 0.003 0.626 | 0.48 12

6 | 0.664 = 0.005 0.610 | 0.48 10

4 | 0.668 £ 0.002 0.612 | 0.47 11

3| 0.671 £0.004 0.611 | 0.47 11

2 | 0.660 £+ 0.003 0.610 | 0.45 13
Table 2.  Challenge scores for our final selected entry

(team snu_adsl) on our training set, scoring on the hidden
validation set, and scoring on the hidden test set as well as
the ranking on the hidden test set. The evaluation on our
training set was repeated seven times with different seeds.

bel masking were helpful. For the feature extraction, it is
interesting to note that using age and sex only can slightly
deteriorate the performance. For the pre-processing, the
result shows that only one of filtering or standardization
should be used. Nonetheless, we have utilized both tech-
niques because the evaluation results varied depending on
how the data is split and because we considered both to be
fundamental steps that can handle unexpected characteris-
tics of unseen datasets.

The model performances for our training set, hidden val-
idation set, and hidden test set are shown in Table

4. Discussions

It can be seen that the challenge scores for the hid-
den test datasets are significantly lower than the challenge
scores for the training or validation datasets. The unex-
pected performance degradation might be due to our in-
correct assumptions on the label availability and charac-
teristics of the test datasets.

As explained earlier, the results in Table[2]show that the
performance is not significantly affected by the number of
leads. The observation stands for all of training, valida-
tion, and test datasets, and it indicates that personalized
devices with small number of leads might be effective for
diagnosing cardiac abnormalities.

The size of challenge dataset turned out to be large
enough and the well-known self-supervised learning ap-
proach in [4] was not helpful for performance enhance-

ment. The approach, however, should be helpful when the
size of labeled dataset is smaller or when there is an ad-
ditional unlabeled dataset of a large size. Also, a possi-
ble future work is to develop a specialized self-supervised
learning technique that can utilize ECG datasets better.
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