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Abstract

The standard screening tool for cardiac arrhythmias re-
mains to be the 12-lead electrocardiography (ECG). De-
spite carrying rich information about different types of
arrhythmias, it is considered bulky, high-cost, and of-
ten hard to use. In this study, we sought to investi-
gate the efficiency of using 6-lead, 4-lead, 3-lead, and 2-
lead ECG in discriminating between 26 arrhythmia types
and compare them with the standard 12-lead ECG. as
part of PhysioNet/Computing in Cardiology 2021 Chal-
lenge. Our team, Care4MyHeart, developed a deep learn-
ing approach based on residual convolutional neural net-
works and Bi-directional long short term memory (ResNet-
BiLSTM) to extract deep-activated features from ECG os-
cillatory components obtained using a novel swarm de-
composition (SWD) algorithm. Alongside age and sex,
these automated features were combined with hand-crafted
features from heart rate variability and SWD components
for training and classification. Our approach achieved a
challenge score of 0.45, 0.43, 0.44, 0.43, and 0.42 using
10-fold cross-validation using the training set and 0.25,
0.23, 0.24, 0.22, and 0.20 using the hidden test set for 12-
lead, 6-lead, 4-lead, 3-lead, and 2-lead, respectively. Our
team was ranked the 31/38 with an average all-lead test
score of 0.22.

1. Introduction

Cardiovascular disease (CVD) is considered the major
cause of death worldwide with an estimated 17.9 million
people suffering from its conditions that led to death (31%
of all deaths) [1]. Most of CVDs are caused by arrhythmias
that are usually miss-diagnosed by clinicians [2]. The stan-
dard tool to diagnose cardiac arrhythmias is the 12-lead
electrocardiography (ECG). However, the limited acces-
sibility of 12-lead recording devices makes it essential to
find smaller, cost-effective, and comparable alternatives.

To address this concern, we present in this study a com-

plete deep learning approach that utilizes residual con-
volutional and recurrent neural networks alongside hand-
crafted features to discriminate between cardiac arrhyth-
mias in 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead ECG
from patient data obtained from the PhysioNet/Computing
in Cardiology Challenge 2021 [3, 4]. The novelty of the
proposed approach, which is an extension to the our 2020
challenge algorithm [5], lies in utilizing a novel swarm de-
composition (SWD) algorithm for the first time in cardi-
ology applications to decompose ECG signals, and thus,
making it simpler for feature extraction techniques to ob-
tain specific per-arrhythmia characteristics.

2. Material and methods

2.1. Database preparation

A total of 88,253 labeled recordings obtained from 6 dif-
ferent international 12-lead ECG datasets were provided in
the challenge. All recordings of multiple labels (arrhyth-
mia types) were duplicated to ensure a signal for each la-
bel. In addition, only 30 arrhythmia types were selected
for challenge scoring out of 133 arrhythmia types. From
these 30 types, 8 arrhythmia types were merged to repre-
sent the same label; namely complete right bundle branch
block and right bundle branch block, complete left bundle
branch block and left bundle branch block, premature atrial
contraction and supraventricular premature beats, and pre-
mature ventricular contractions and ventricular premature
beats. Thus, the resulting dataset included a total of 26 ar-
rhythmia types/labels. To reduce the size of the dataset as
well as the unbalance in labels, each arrhythmia type was
reduced to be only with 7,500 samples or less. Therefore,
the final dataset included a total of 89,165 samples. The 5
leads scenarios followed in the challenge were as follows,
• 12-lead: I, II, III, aVR, aVL, aVF, V1, ..., V6
• 6-lead: I, II, III, aVR, aVL, aVF
• 4-lead: I, II, III, V2
• 3-lead: I, II, V2
• 2-lead: I, II
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Figure 1. Swarm decomposition (SWD) mechanism to extract low and high oscillatory components from ECG signals.

2.2. Pre-processing

The proposed approach applies minimal pre-processing
steps to enhance ECG signals as well as to reduce noise
components before any further processing. First, all sig-
nals were re-sampled to 64 Hz and trimmed to cover only
the first 10 seconds of the recording, i.e, 640 samples.
Then, each signal was subjected to baseline wandering re-
moval to discard the low frequency component that results
from strong movements or electrodes displacement. To
achieve this, the Gaussian-weighted moving average filter
was adopted with a window size of 100 samples. All sig-
nals were normalized based on z-score normalization to
ensure a mean of 0 and standard deviation of 1.

2.3. Swarm decomposition

In this work, we introduce for the first time the use of
the novel swarm decomposition (SWD) algorithm in car-
diac signals analysis. SWD is based on swarm filtering

(SWF); where the decomposition of signals is represented
by a virtual swarm-prey hunting with an objective of ob-
taining corresponding oscillatory components (OCs) [6].
SWD parameters were initially fine-tuned to ensure accu-
rate decomposition. The components’ threshold was set
to 0.1 with a standard deviation of 0.1 and a Welch win-
dow size of 30% of the original signal length. The decom-
position of each ECG signal (Fig. 1) results in a varied
number of OCs (mostly 5-10 components), and the total
number of these OCs varies according to the number of
the selected leads scenario. However, the final overall OCs
were formed after merging all OCs from all leads with fre-
quencies less than 0.1 Hz to form the low-frequency OC of
patient’s ECG and frequencies more than 0.1 to form the
high-frequency OC accordingly. At the end, two OCs (low
and high frequencies) were obtained as an overall transfor-
mation of the selected leads scenario, thus, reducing the
complexity when analyzing ECG signals.

Page 2



Figure 2. The proposed deep learning model based on ResNet-BiLSTM alongside hand-crafted features used for training.

2.4. Deep learning framework

The proposed deep learning model consisted of two
main stages. First, the model was trained to extract deep-
activated features from the final overall two SWD OCs
(mentioned in previous section) in a form of network acti-
vations. Then, these activations were combined with a set
of hand-crafted features and used accordingly to train the
final model.

2.4.1. Deep-activated features

Deep-activated features refer to the attributes extracted
automatically through deep learning network training. The
network was built as a combination of residual convolu-
tional neural networks and Bi-directional long short term
memory (ResNet-BiLSTM). First, the convolutional neu-
ral network was designed as a residual neural network
(ResNet) to ensure a better performance as well as to train
on deeper details. Then, the network was concatenated
with a 512 BiLSTM layer to extract additional features
across the time sequence in the forward and backward di-
rections. The complete architecture is represented in Fig.
2 with more information about the layers and parameters
used.

2.4.2. Hand-crafted features

Alongside age and sex, hand-crafted features included
for this work were from heart rate variability (HRV) as
well as from the two extracted SWD OCs. All features

were extracted from the overall SWD OCs of the 5th leads
scenario (2-lead: I and II), as these two leads were repre-
sented in all 5 leads scenarios in the challenge. For HRV,
time-domain, frequency-domain, non-linear, and fragmen-
tation metrics mentioned in [7] were extracted. In addition,
kurtosis and skewness values of the overall HRV data were
calculated. For SWD OCs, features were extracted from
each OC including sample entropy, Higuchi and Katz frac-
tal dimensions, kurtosis, skewness, and zero-crossing.

2.4.3. Training and classification

The training was optimized based on the adaptive mo-
ment estimation (ADAM) solver. The initial learning rate
was set to 0.001, with a dropping factor of 0.1 occurring
once at the 12th epoch. The model was trained for a to-
tal of 15 epochs using a mini-batch size of 512 samples.
In addition, the L2-regularization was set to 10−5. Dur-
ing training, initial weights for every class were calculated
empirically and used within the classification layer that in-
cluded a weighted cross-entropy loss function to optimize
the final weights and network parameters. For predictions,
we followed a voting mechanism based on the total num-
ber of leads scenarios. For example, for 12-lead, because
all leads are available, we used 5 trained models represent-
ing each leads scenario; namely 12-lead, 6-lead, 4-lead,
3-lead, and 2-lead. Each scenario’s model returned a pre-
diction score for each arrhythmia type for every patient.
The predictions from every model were summed and nor-
malized between 0 to 1, and all classes with a score ≥ 0.5
were assigned as positive for the selected arrhythmia type.
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Leads Training Validation Test Ranking
All-lead 0.43 0.39 0.22 31

12 0.45 0.41 0.25 30
6 0.43 0.39 0.23 30
4 0.44 0.40 0.24 30
3 0.43 0.39 0.22 31
2 0.42 0.37 0.20 31

Table 1. Challenge scores for our final team entry
(Care4MyHeart) using 10-fold cross validation on the pub-
lic training set, repeated scoring on the hidden validation
set, and one-time scoring on the hidden test set as well as
the ranking on the hidden test set.

Leads
Using original
ECG signals

Using SWD
components

12 0.32 0.41
6 0.31 0.39
4 0.32 0.40
3 0.31 0.39
2 0.29 0.37

Table 2. Challenge scores comparison between final en-
tries using original ECG signals and swarm decomposition
(SWD) components on the hidden validation set of 12-lead

3. Results

The proposed model was evaluated (Fig.1) initially us-
ing k-fold cross-validation of 10 folds. The performance
on the same dataset used for training reached an overall
challenge score of 0.45, 0.43, 0.44, 0.43, and 0.42 using
12-lead, 6-lead, 4-lead, 3-lead, and 2-lead ECG, respec-
tively. In addition, the model was evaluated on a hidden
validation set for each leads scenario. The model achieved
an overall challenge score of 0.41, 0.39, 0.40, 0.39, and
0.37 on each scenario. The final scores of the model on
the hidden test set for each lead scenario were 0.25, 0.23,
0.24, 0.22, and 0.20. Our team was ranked the 31st out
of 38 team with an average score across leads (All-lead)
of 0.22. Table 2 compares the performance between SWD
and the original ECG signals when used for training and
prediction on the hidden validation set using 12-lead.

4. Discussion and conclusions

The utilization of SWD allowed for training the model
on a simpler transformation of the varied-lead ECG sig-
nals. Although the model have achieved decent levels of
performance, it can be further improved following several
steps. Initially, the reduction of the total number of sam-
ples prevented the model from training on a wider set of
data. However, it was an essential step in this challenge to
ensure not to exceed the training time limit (48 hours). In

addition, despite of the accurate extraction of OCs by the
SWD algorithm, reducing the values of its parameters (to
less than 0.1) usually results in an even better decompo-
sition of the signals. Thus, better transformation would
have been achieved to enhance the extraction of deep-
activated and hand-crafted features even further as well as
the model’s performance accordingly. In conclusion, SWD
showed strong potential in enhancing the prediction abil-
ity of deep learning in cardiac arrhythmias identification.
Future works would focus on a better preparation of the
algorithm and the utilization of more sophisticated deep
learning neural networks.

Acknowledgments

Healthcare Engineering Innovation Center, Khalifa Uni-
veristy, UAE (Grant: 8474000132) supported this work.

References

[1] World Health Organization. Cardiovascular Diseases
(CVDs): Fact Sheet 2017, 2017. URL 1e3edws.

[2] Mendis, Shanthi and Puska, Pekka and Norrving, Bo and
World Health Organization and others. Global Atlas on Car-
diovascular Disease Prevention and Control. World Health
Organization, 2011. ISBN 9789241564373.

[3] Perez Alday EA, Gu A, Shah A, Robichaux C, Wong AKI,
Liu C, Liu F, Rad BA, Elola A, Seyedi S, Li Q, Sharma A,
Clifford GD, Reyna MA. Classification of 12-lead ECGs: the
PhysioNet/Computing in Cardiology Challenge 2020. Phys-
iological Measurement 2020;41.

[4] Reyna MA, Sadr N, Perez Alday EA, Gu A, Shah A, Ro-
bichaux C, Rad BA, Elola A, Seyedi S, Ansari S, Ghanbari
H, Li Q, Sharma A, Clifford GD. Will Two Do? Varying Di-
mensions in Electrocardiography: the PhysioNet/Computing
in Cardiology Challenge 2021. Computing in Cardiology
2021;48:1–4.

[5] Alkhodari M, Hadjileontiadis LJ, Khandoker AH. Identifica-
tion of Cardiac Arrhythmias from 12-lead ECG using Beat-
wise Analysis and a Combination of CNN and LSTM. In
2020 Computing in Cardiology. IEEE, 2020; 1–4.

[6] Apostolidis, Georgios K et al. Swarm Decomposition: A
Novel Signal Analysis Using Swarm Intelligence. Signal
Processing 2017;132:40–50.

[7] Alkhodari M, Jelinek HF, Werghi N, Hadjileontiadis LJ,
Khandoker AH. Estimating Left Ventricle Ejection Frac-
tion Levels Using Circadian Heart Rate Variability Features
and Support Vector Regression Models. IEEE Journal of
Biomedical and Health Informatics 2020;25(3):746–754.

Address for correspondence:

Ahsan H. Khandoker
Department of Biomedical Engineering, Khalifa University
PO Box 127788, Abu Dhabi, UAE
ahsan.khandoker@ku.ac.ae

Page 4


