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Abstract

Recent research has shown that artificial intelligence
can detect heart pathologies when applied to electrocar-
diogram data. As of now, underlying architectures have
mostly been built for specific problems with restricted gen-
eralisation to other patterns, e.g. convolutional neural
network (CNN)-based models able to detect local patterns
do not capture abnormalities with rhythmic dependencies
well. Additionally, standard deep learning approaches
cannot incorporate knowledge in non-deep learning rep-
resentations. Aim of this project is to overcome limita-
tions of distinct architectures by using a hybrid ensemble
of models, also incorporating expert knowledge. Under
the Team name ”CardiolQ” the model was entered in the
PhysioNet/Computing in Cardiology Challenge 2021 and
achieved ”Challenge Metric” scores of 0.4, 0.29, 0.33,
0.36, and 0.28 for the 12, 6, 4, 3, and 2 lead inputs, re-
spectively leading to a ranking of 33.

1. Introduction

The electrocardiogram (ECG) is a ubiquitously avail-
able, cost-effective diagnostic instrument for physicians.
Machine and deep learning (ML and DL) methods have
been successfully applied to detect complex often unspe-
cific patterns that indicate severe problems with the heart
[1]. However, these methods require large amounts of high
quality data accurately labelled with diagnoses. In their
daily routine physicians identify obvious signs for illness
in the structures of the ECG by applying rules. Traditional
formulas for Long QT and Low Voltage QRS are still in use
and represent cardiological knowledge codified into appli-
cable heuristics [2, 3]. In this paper, we demonstrate how
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a unified ensemble architecture can incorporate diagnostic
engines of different type, e.g. DL models and heuristics,
into a single prediction engine that can overcome limita-
tions of each of its components in stand alone application.

2. Methods

The core of our concept is an orchestration of architec-
tures in which submodels working with sufficient preci-
sion for a subset of diseases are combined into a compris-
ing computer aided diagnostic engine with comprehensi-
ble precision for a larger set of pathologies. Submodels
working on subsets of available leads are combined into
an ensemble which computes aggregated hypotheses for
either regression or classification tasks [4]. Submodels can
be either be homogeneous or heterogeneous allowing for
different types of learners in the ensemble. Aggregation
of the predictions may follow various paradigm voting,
(weighted) averaging, or meta-learning [5]. With this ap-
proach hybrid architectures are possible in which also rule-
based inference engines can be incorporated. For proof of
concept, we have used a DL model derived from a previ-
ously published CNN model that successfully predict pa-
tients with myocardial scar based on ECG recordings [6].
With appropriate modifications this model can be applied
to multiclass and multilabel tasks. This model is combined
with simple exemplary established heuristics for specific
diagnoses such as Long QT syndrome and Low Voltage
ORS that fit well as their definition is based on few well de-
fined ECG features. While the output of the DL model is a
probability for a given label the heuristics give binary yes-
no-answers. The ensemble applies (soft) vetoing, meaning
that a non affirmative answer of the heuristics may overrule
a positive response of the DL model.

In a multilabel problem for a given domain Z with a set
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of labels C each z € Z is labelled with a set of labels
taken from C. Let C(z) C C denote the set of labels
assigned to z € Z. A learner function s that classifies
z € Z with ¢ € C is defined as: s: Z x C — [0,1].
The result of s(z, ¢) is then transformed into the hypothesis
H,(z, ¢) according to:

1 ifs(z,e) >,

Hi(z,0) = { —1 else (M
so that {¢ € C : s(z,¢) > 74} (7, defaulting to 0.5).
Let Hs(z) C C denote the set of all predicted labels in C
assigned to z by s. For a set of .S of such learner functions
mapping Z with classes C we define an ensemble Eg:

Bs(z,¢) = sign()_ cs - Hy(2,0)) @)

seS

The weights ¢4 can be defined, learned or predefined. We
assume equal weights for each H4(z, ¢). For s € S we can
now define that s has soft veto priority over s’ in Eg \ {s}.
The prediction of Fg is then defined as:

Es (Z> C) = Sign(Efs,s’(Za C) + (CS + CS’)HS,S/(Z,C)> (3)

where E_; . denotes the ensemble with prediction algo-
rithms S\ {s,s'} and H, (. . is the hypothesis based
ons'(z,¢) — (1, — 7a) (1 — s(z,¢)). Furthermore, 7, is a
threshold above which an affirmative answer of s’ will be
accepted. The name soft veto priority indicates that such a
predictor overrules affirmative results of another classifier
which are too weak, i.e. for which the probability is too
low.

Our ensemble F = {s1, s2, s3} applied to the ECG sig-
nals consists of a DL model s; based on our previously
published CNN architecture adapted to the given multil-
abel task [6], a heuristic so for detection of Long QT, and
a second heuristic s3 for Low Voltage QRS. The ensemble
can process ECG recordings with different lead sets such
as 12, 6, 4, 3, and 2 lead ECGs. While s; predicts a proba-
bility for each label in C, i.e. s1(z,¢) € [0, 1] transformed
to be —1 or 1, so and s3 are label specific, i.e. they re-
turn —1 for every label but the one representing Long QT
syndrome and Low Voltage ORS, respectively. In that case
$z(z,¢)(x = 2,3) is either 0 or 1 indicating the presence
or absence of the disease/symptom. In the ensemble s an
s3 both have soft veto priority over s1.

Before ECG signals with e.g. different lead sets are
fed into our ensemble model preprocessing is performed.
During this preprocessing the sampling frequency and the
length of all leads of the ECG signal are normalised so that
heterogeneous input data can be used. Higher frequencies
potentially lead to better results but induce higher hard-
ware requirements. The sampling rate also determines the
size of the input layer of our model. Table 1 describes

Layer Outputsize | Channels

Input 1000 12

Conv 1000 64

Pool 500 64

Conv 500 64

Pool 250 64

Dropout(15%) 250 64

Conv 250 64

Pool 125 64

Dropout(15%) 125 64

Conv 125 64

Pool 62 64

Dropout(15%) 62 64

Conv 62 64

Pool 31 64

Dropout(15%) 31 64
GAP 64 1
Dense 256 1
Dropout(31.5%) 256 1
Dense 256 1
Dropout(31.5%) 256 1
Dense 256 1
Dropout(31.5%) 256 1
Dense 58 1
Dense(Output) 58 1

Table 1. Architecture of the DL model s

details of that model for an example frequency of 200Hz.
As this architecture is designed for multi-label problems,
the output layer uses sigmoid activation instead of soft-
max. Note that the output layer contains 58 neurons as the
model is designed to assign 29 different labels. Each pair
of neurons therefore represents one of the possible labels.
The first neuron in each pair (even index) represents the
positive pressure while the second one (odd indexes) rep-
resents the negative pressure for its corresponding label.

Finally, the output of the s; is combined with the s
and s3. Both exemplarily used heuristics depend on an-
notated ECG signals in which Q-, R-, S-, and T-Peaks
and T-offsets are located. We annotate the raw signals us-
ing the NeuroKit2 library (version 0.1.1) [7]. These anno-
tated peaks are then used to estimate the length of the QT-
interval (Long QT) and the voltages the QRS-complexes
(Low Voltage QRS). Both heuristics have soft veto priority
and overrule affirmative results of the DL model if the cor-
responding probabilities are below the threshold value 7.
T, can be tuned during hyperparameter optimisation.

In the official phase of PhysioNet/CinC Challenge[8][9],
an earlier version of our proposed ensemble achieved a
challenge metric score of 0.318, 0.246, 0.214, 0.259, and
0.257 for the 12, 6, 4, 3, and 2 lead inputs, respectively
(Team CardiolQ). During this challenge the model was
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Figure 1. Ensemble Architecture
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Figure 2. False positives in Long QT and Low Voltage
QRS for values of 7.

trained with data from multiple datasets: CPSC2018[10],
CPSC2018-Extra [10], St Petersburg[11], PTB Diagnos-
tic[12], PTB-XL[13], Georgia 12-Lead ECG Challenge
Database[8][9], Chapman University (Shaoxing People’s
Hospital)[14], and Ningbo first Hospital[15]. Due to hard-
ware limitations imposed by the challenge infrastructure
ECG data had to be downsampled to 100Hz (for s;) with
a sample length of five seconds (only for s, s2 and s3 use
full length).

In local tests the St Petersburg data source was skipped,
as this dataset only contains 75 ECG recordings of a lower
native sampling rate than any other database. Data used
in local experiments is resampled to 200Hz with a sample
length of five seconds. Data was split into training- (75%)
and validation set (25%).

On 12-Lead validation sets our ensemble achieved val-
ues of 0.527 for the 2021 PhysioNet challenge metric ! and

Lhttps://physionetchallenges.org/2021/

Leads | Test | Rank
12 04 33

6 | 0.29 33
41033 33
31036 33
21028 33

Table 2. Challenge metric in unseen test sets for each of
the lead subsets

an AUROC of 0.932.

Our approach strongly depends on the precision of
the annotation algorithm. While the NeuroKit2 library
achieves high precision in determining R-peaks, we ob-
served imprecise or missing locations of the Q-, S-peaks,
and T-offsets that impair the results of our heuristics. Fig-
ure 3 shows how annotations may be wrong or lack pre-
cision when applied to reals-world ECG signals from the
PhysioNet challenge datasets that deviate from an ideal
ECG signal. Here, Q-peaks are missing and a T-peak has
mistakenly been annotated as an R-peak. As the heuristics
estimate interval lengths, e.g. the QT interval, and measure
voltages, e.g. maximal voltages in QRS-complex, by us-
ing the annotations the quality of the diagnoses obviously
suffers from such inaccuracies.

For proof of concept, we therefore have experimented
with perfect heuristics that just mirror the label that has
manually been assigned to the recordings. Figure 2 shows
the number of FP (false positive) classifications of our en-
semble for different values of 7, when using the perfect
heuristics for Long QT and Low Voltage ORS.

3. Discussion and Conclusion

Overall, our results support the hypothesis that single
model architectures that perform well on specific diseases
can be improved by amending restrictions of their general-
isation power on elementary different diseases by combin-
ing specifically trained expert models together with disease
specific simple algorithmic implementations in an ensem-
ble with an appropriate aggregation. This is a promising
approach to outperform singular models.

In this paper, we discussed an architecture that can in-
corporate different types of diagnostic algorithms working
on ECG recordings with various lead sets into a single pre-
diction engine. Diagnostic algorithms can either be rule
based, ML or DL models or simple rules of thumb taken
from the daily routine of the cardiologist. Our proof of
concept shows that the ensemble built with a DL model
and two simple heuristics can potentially have a high di-
agnostic leverage. Heuristic and rule based approaches are
particularly sensitive to the real world data problem. Au-
tomated annotation algorithms must become more robust
to deviation from an ideal ECG signal. Here, we further
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see potential for DL algorithms for improving such anno-
tation algorithms. Furthermore, future research will extend
the set of prediction mechanisms to be included in the en-
semble and elaborate on how the results will be combined.
Using additional knowledge of cardiological experts en-
coded in machine readable form, e.g. in ontologies, can
potentially be used to control and fine tune the ensemble
mechanisms. For example, knowledge about a disease and
the affected anatomy - e.g. information about and how and
where a disease is mirrored in the ECG - can be used to de-
termine which predictions of the elements of the ensemble
to use and how to combine them into a single result.
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