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Abstract

Background: Early and correct diagnosis of cardiac ar-
rhythmias from Multichannel Electrocardiogram (MECG)
is a challenging problem. We address this problem through
PhysioNet/Computing in Cardiology Challenge 2021.

Method: The proposed method incorporates demo-
graphic features including patient age, gender and heart-
beat features with MECG. Initially, MECG is cleaned from
noise, followed by resampling and segmentation. Then R-
peaks are extracted from Lead II signal using Pan Tomp-
kins detector to obtain Heartbeat Features such as Heart
Rate, RR Intervals, Mean QRS Amplitude, Hermite poly-
nomial coefficients, statistical features, and Wave Ampli-
tude based features. The demographic and heartbeat fea-
tures combined with MECG are classified using a Parallel
Convolution Neural Network with Global Average Pooling
(PCNN-GAP) network.

Results: Our team, skylark, achieved a score of 0.36,
0.41, 0.41, 0.45, and 0.49 for the 12-lead, 6-lead, 4-lead,
3-lead, and 2-lead versions of the hidden test set with the
Challenge evaluation metric. However, the results were
not officially ranked because the training code may select
the offline pre-trained models rather than using the train-
ing data. Therefore, the model may not adapt to new train-
ing instances.

1. Introduction

Cardiovascular diseases (CVD) such as arrhythmia are
a leading cause of death worldwide [1]. Detecting arrhyth-
mias before their occurrence using an Electrocardiogram
(ECG) signal helps in risk stratification, better medical as-
sistance, and patient treatment [2]. The standard 12-lead
ECG is acquired non-invasively by placing electrodes to
the patients’ body. The recorded electrical activity of the
heart is used to diagnose cardiac pathologies. The lim-
ited accessibility of 12-lead devices provides motivation
to use reduced lead devices as they are cheap and easily
accessible. However, reduced lead devices capture lim-
ited useful information compared to 12-lead devices [3].

This paper addresses the PhysioNet/Computing in Cardi-
ology Challenge 2021 that focuses on automated, open-
source approaches for classifying cardiac abnormalities
from reduced-lead ECGs [4–6]. Our best entry in the chal-
lenge incorporates demographic features including age,
gender and heartbeat features with MECG for cardiac ab-
normality detection using parallel convolution neural net-
work with global average pooling (PCNN-GAP) network.

2. Methods

The workflow followed in this paper encompasses a pre-
processing and classification stage as described in Figure
1. The dataset consist of patient records which consists of
MECG with 12 lead ECGs, Analog to Digital conversion
(ADC) gain, baseline for each lead, age, gender, patient
history, symptoms, medical prescription, and diagnosis or
cardiac rhythm information (disease labels). The prepro-
cessing stage prepares the dataset for modelling which is
further classified by the proposed classifier.
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Figure 1. Proposed workflow consisting of patient record
description, preprocessing, and classification stages.

Computing in Cardiology 2021; Vol 48 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2021.231



2.1. Preprocessing

The MECG is normalized using the respective ADC
gains and baselines. The resultant signal (ECGNew) is
decluttered from low frequency noise (≤ 0.6 Hz) such as
baseline wander (BW) and high frequency noise (50 Hz)
such as powerline interference (PLI). The data is procured
from different sources with different sampling frequencies,
resampling to 500 Hz is performed as 4/6 sources are
sampled at 500 Hz. Then, segments of 10-second are ex-
tracted from resampled signals as it is the most common
duration among all the records. The longer length seg-
ments are divided into 10 second segments are short seg-
ments are padded with zeros. Then heartbeat level features
and demographic features are extracted that includes age
and gender encoding, followed by classification.

Heartbeat Features: The Lead II signal is selected
from segmented MECG for R-peak detection using the Pan
Tompkins Detection (PTD) algorithm [7]. Lead II pro-
vides better depiction of characteristic waveforms present
in ECG rhythm and is the common lead in all sets [8]. If
PTD algorithm fails to extract R-peaks from the clean sig-
nal, then our method returns a 997 dimensional zero fea-
ture vector. If the peaks are detected using PTD, they are
updated with the local maxima present in the close vicin-
ity. The correct R-peaks are used to extract the following
features: (i) Average Heart rate; (ii) Mean Square Differ-
ence between the RR intervals (MSDRR); (iii) Mean QRS
Amplitude; and (iv) Beat Level Features (BLF). The aver-
age heart rate (HRavg) and MSDRR are calculated using
Eq. 1. The RR intervals (RRI) are calculated using the dif-
ference between adjacent R-peaks. Mean QRS amplitude
is the mean of R-Peak amplitude.

HR =
60× Fs

R− PeakCurrent −R− PeakPrevious

HRavg =

∑
(HR)

100× Len(HR)

MSDRR =
Mean[Diff [RRI]2]

100
(1)

The BLF are calculated for up to six concurrent beats
enclosed inside a window of 130 timestamps left to the R-
peak and 230 timestamps right to the R-peak so that at least
a heartbeat is enclosed in the window. The BLF include:
(i) Hermite Polynomial Coefficients (HPC) [9]; (ii) Sta-
tistical Features [9, 10]; and (iii) Wave Amplitude-Based
Features (WABF) [10]. The HPC exploits similarity be-
tween the beats by representing them with Hermite basis
function coefficients. Assume, x(t) denotes the beat, the
Hermite series expansion yields Eq. 2. Here, cn is the ex-
pansion coefficient, σ is width parameter, H0(x) = 1 and
H1(x) = 2x. The higher the Hermite polynomial order,

the higher is its frequency of changes within the time do-
main, and the better is its capability to reconstruct quick
changes of the ECG paradigm.

x(t) =

N−1∑
n=0

cnφn(t, σ)

φn(t, σ) =
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σ2nn!
√
π
e

−t2

2σ2 Hn

(
t

σ

)
Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x)

(2)

For computing the statistical features, the beat is di-
vided into five intervals, and Kurtosis and Skewness value
over each interval is computed. For computing WABF,
euclidean distance is calculated between R-peak and the
characteristic waves such as P, Q, S, T-wave. The BLF
produce a 994 dimensional feature vector. If the number
of beats are less and the features are less than 994, then
zero padding is performed. The obtained feature vector is
combined with HRavg, MSDRR, and mean QRS ampli-
tude to make a 997 dimensional feature vector.

Demographic Features: The age and gender values are
extracted for each patient. The age is normalised between
0 and 1. The negative and empty age fields are replaced
with zero. One hot encoding (OHE) is performed for the
gender attribute, where the male and female are encoded
as (1,0) and (0,1), respectively. The gender with Nan value
is encoded as (0,0). The OHE age and normalised gender
attributes account for three features.

The final feature vector consisting of cleaned 10 sec-
ond MECG of 5000 timestamps with L leads, and a 1000
dimensional feature vector are provided to the proposed
PCNN-GAP with feature classifier. L depends on number
of leads available in the dataset. For 2-lead ECG, L = 2.

2.2. PCNN-GAP with Feature Classifier

The proposed architecture of Parallel Convolution Neu-
ral Network - Global Average Pooling (PCNN-GAP) in-
corporated with age, gender, and heartbeat level features is
illustrated in Figure 2. The idea behind the application of
parallel convolution layers is that MECG consists of local
and global patterns. The global patterns are extracted using
the large kernels embedded in the left branch and the local
patterns are extracted using the small kernels embedded in
the right branch of PCNN-GAP network. The number of
filters, stride, and activation function of each convolution
layer are mentioned in Figure 2. For instance, the first con-
volution layer in the left branch encompasses a 1-D convo-
lution with 48 filters of size 19 and stride 4 followed by a
Batch Normalization (BN) [11] layer and Rectified Linear
Unit (ReLU) activation. Four more layers are added in a
cascaded fashion in both branches with more number of
filters of reduced size followed by 1-D GAP layer [12].
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Figure 2. Architecture of Feature Fused PCNN-GAP.

The GAP layer calculates the spatial average of filters,
making it robust to spatial translations of MECG. GAP
layer has the following advantages over the combination
of flatten and fully connected (FC) layer: (i) less prone to
overfitting; (ii) no dependency on external regularization;
(iii) no trainable parameters [12]. The reduced parame-
ters lead to significantly faster training and reduced model
size, making it suitable for low resource devices. The GAP
layer reduces the last layer dimensions from (53, 112) to
(112). The branch outputs are concatenated with encoded
feature vector obtained from FC layer and generates a 234-
dimensional feature vector. This vector is provided to FC
layers and scores (s ∈ [0, 1]) are produced by sigmoid ac-
tivation function for ‘scored’ pathologies. The predicted
scores are thresholded and labels are assigned only if the
respective threshold is surpassed.

3. Results

Challenge scores for the final selected entry of the team
skylark using 5-fold Cross Validation (CV) on the pub-

lic training set, scoring and ranking on the hidden vali-
dation set are provided in Table 1. However, the results
were not officially ranked because the training code may
select the offline pre-trained models rather than using the
training data. The model may not adapt to new training
instances. While performing CV, we did not include strati-
fied holdout MECG’s of the same patient in both the train-
ing and validation set. We tried multiple approaches, and
were able to submit three approaches for testing on vali-
dation set. Table 2 describes the comparison between the
approaches: PCNN-GAP; PCNN-GAP-Big; PCNN-GAP-
Feature; and PCNN-GAP-Big-Feature. The PCNN-GAP
method consists of parallel CNN and GAP layer, PCNN-
GAP-Big consists of two additional convolution layers in
each branch, both PCNN-GAP-Feature and PCNN-GAP-
Big-Feature incorporates demographic and heartbeat fea-
tures in PCNN-GAP and PCNN-GAP-Big model, respec-
tively. The PCNN-GAP-Big-Feature was not submitted
due to time constraints and therefore the validation re-
sults are not available (NAVL). The proposed methods
improved over our 8-layer ResNet model that performed
multi-class classification and predicted only single-label
for MECG [13]. Introducing multiple labels improved the
score to 0.5. Adding features increased the score to 0.51
on validation set for 12-lead ECG in the official phase.

The thresholding applied in sigmoid activation function
affects the evaluation metrics as described in Figure 3.
Thresholding the scores at 0.1 produces optimum results
for all evaluation metrics and deteriorates at other inter-
vals. During testing, the label predicted most number of
times by MECG segments of a patient record is chosen as
the final predicted label.

Leads Training Validation Test Ranking
12 0.5± 0.03 0.478 0.36 NA
6 0.19± 0.04 0.467 0.41 NA
4 0.56± 0.04 0.517 0.41 NA
3 0.53± 0.04 0.532 0.45 NA
2 0.59± 0.04 0.498 0.49 NA

Table 1. Challenge scores for our final selected entry
(team skylark) using 5-fold CV on the public training set,
hidden validation set, test set, and ranking on test set.

4. Discussion and Conclusions

We implemented a multi-label strategy to detect 29 car-
diac abnormalities and ‘sinus rhythm’ from MECG sig-
nals. During training, early stopping criteria was employed
and validation AUC was monitored for 5 epochs to avoid
overfitting. We believe that fusing demographic and heart-
beat features with MECG proved to be beneficial for clas-
sification for increased number of lead sets. Adding fea-
tures improved the performance for more number of leads
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PCNN-GAP PCNN-GAP-Big PCNN-GAP-Feature PCNN-GAP-Big-Feature
Leads Training Validation Training Validation Training Validation Training Validation

12 0.53±0.06 0.495 0.54±0.07 0.466 0.50±0.03 0.478 0.50±0.12 NAVL
6 0.18±0.07 0.516 0.19±0.05 0.426 0.19±0.04 0.467 0.05±0.05 NAVL
4 0.55±0.04 0.496 0.56±0.02 0.5 0.56±0.04 0.517 0.62±0.02 NAVL
3 0.57±0.02 0.493 0.53±0.10 0.491 0.53±0.04 0.532 0.57±0.01 NAVL
2 0.56±0.04 0.499 0.58±0.04 0.514 0.59±0.04 0.498 0.62±0.02 NAVL

Table 2. Comparison of PCNN-GAP-Feature with other investigated approaches. NAVL: Not Available.
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Figure 3. Deterioration in evaluation metrics with increas-
ing threshold of last layer sigmoid activation function.

and reduced the performance for reduced lead sets. The
model with less number of trainable parameters performed
better for reduced lead sets and models with more num-
ber of trainable parameters performed better for standard
12-lead ECG. The training time of feature fused models
was around 3000 seconds and 200 seconds for non-feature
based models. The two lead model outperformed other
configuration models. Therefore, it can be concluded that
two leads could be enough for most cases for detecting car-
diac abnormalities through MECG.

Furthermore, the weight matrix was not used during
training. PCNN-GAP-Feature model was preferred for
all lead configurations making the approach sub optimal.
Feature selection is not performed for selecting most con-
tributing features which might have deteriorated the per-
formance. Since noisy rhythms are not present in scored
classes, the approach may produce high false alarm rates
for noisy ECGs, limiting usability of the proposed algo-
rithm in real-world applications.
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