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Abstract

This study presents PhysioNauts Team’s contribution to
the PhysioNet/CinC Challenge 2021 on ECG classifica-
tion for variable leads. Three types of labels were iden-
tified: those affecting cardiac rhythm, ECG morphology
or both. The full model integrated handcrafted rhythm fea-
tures and deep learning features into a residual neural net-
work (ResNet) with a squeeze and excitation module and a
wide 10-neuron single-layer fully connected (FC) branch
to leverage the learning of both feature types. The ResNet
inputs were ECG segments of 4096 samples downsampled
to 257 Hz. The FC inputs were standard rhythm features
extracted from the RR-series. Class imbalance was mit-
igated by selecting only a third of normal sinus rhythm
and sinus bradycardia recordings. Moreover, threshold
optimization was performed based on a grid search and
the Nelder-Mead method to maximize the Challenge met-
ric (CM). Our entry failed on the UMich test data, so it was
not officially ranked and it didn’t receive official scores on
the full test set. The CMs obtained in the unofficial en-
try were 0.613, 0.585, 0.603, 0,594, and 0.582 on 12-lead,
6-lead, 4-lead, 3-lead, 2-lead, respectively.

1. Introduction

The electrocardiogram (ECG) records the heart’s elec-
trical activity. It is used for the identification of cardiac
electrical abnormalities. ECGs may be acquired with a
variable number of leads depending on the device used,
the duration and scope of the registration. While the stan-
dard clinical ECG consists on a 12-lead 30s ECG, Holter
monitoring intended for a long-term recording (24-48 h)
typically uses a reduced number of leads.

ECG manual annotation is highly time consuming and
requires of trained professionals. Although many stud-
ies in the past have attempted to develop automatic algo-
rithms for ECG analysis [ 13|, still no method has proven
to detect pathologies using variable ECG leads from sig-
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nals acquired using different devices and clinical centers.
The PhysioNet/Computing in Cardiology Challenge 2021
addresses this problem by providing a multi center ECG
database [[2-9] with variable leads and signal lengths to
develop an algorithm capable of detecting 26 different
pathologies.

In this work we present the PhysioNauts Team’s contri-
bution to the CinC Challenge. The presented study focused
on the nature of the detected pathologies: some affect the
morphology of the ECG, others its rhythm, or both. The
combination of a modified ResNet with another branch fed
with temporal parameters was exploited to leverage both
morphological and rhythmic properties of the pathologies,
and improve the classification capabilities of the neural
networks.

2. Material and Methods

Eight different datasets were made available by the
Challenge (for further details the reader is referred to
[2H-9]) with a total of 88253 subjects associated with 133
labels, representing different pathologies. Only 30 out
of 133 were of interest for the challenge. The unscored
signals were discarded, and only 81966 were considered.
The recordings were relabeled, keeping only 26 out of the
30 scored labels, as 8 of them were considered equiva-
lent [10]. Recordings were multi-labeled, and had variable
sampling frequencies, between 257 Hz up to 1000 Hz, and
duration, with signals of 5 s, 10 s and 120 s long, only 74
recordings were 30 minutes long.

2.1. ResNet data processing

Recordings were resampled to 257 Hz, then a common
length of 4096 samples was fixed: if the signal was shorter
it was zero padded, if it was longer, windowing in a ran-
dom part of the signal was performed, as done by Zhao et
al. [11]. These processed data were fed to the ResNet, as
shown in Figure T}
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Figure 1: The two flows of information. A. processing of ECG before giving it to the ResNet; B. extraction of temporal
features for the wide branch. The two branches are then concatenated to produce the output probabilities and classes.

2.2. Temporal Features extraction

Lead ’II” was chosen to obtain the RR time series since,
together with lead ’T’, it was the only one common to all
the lead subsets, and better suited for R peak extraction.
Raw signals were processed as follows:

1. Application of 2" order Butterworth band-pass filter in
the range 5-15 Hz.

2. Normalization of filtered signals in the range [-1,1].

3. A combination of Pan Tompkins and amplitude and
time (equations (T) and (2)), respectively) thresholds were
applied for R peak detection.

Thramp = Wsignal + 2% Osignals (1
Thriime = 150ms, 2)

where [is;gnq i the mean value of the filtered and normal-
ized ECG, and 0 ;41,4 is its standard deviation. If less than
three peaks or less than 30 beats/min were found with the
thresholds, Pan Tompkins was applied.

4. Extraction of the RR event series in milliseconds [ms].
5. Outlier removal procedure using as threshold the rela-
tionship of equation (3)):

Throutliers = Hrrseries + d * Orrseries (3)

where [byrseries aNd Oprseries are the mean and standard
deviation of the RR series respectively [|12].

6. Extraction from RR series the 16 temporal parameters
typically used in HRV analysis [13|[14]], shown in Table[I]
7. Normalization of the parameters with MinMax method.
These parameters were fed to the wide branch of the net-
work, as shown in Figure

2.3.  Model Architecture

The network consisted in two branches, as shown in Fig-
ure@ The first one was a modified ResNet [[11]], composed
by two types of blocks: the Residual Block (ResBs) and
the Squeeze-and-Excitation block (SE). The standardized-
windowed signals (flow A of Figure|l) were fed to a Con-
volutional Layer, and then given to the eight successive

Time Parameter
mean_nni

Description
Mean RR interval

sdnn RR interval std ¢
sdsd Std of adjacent RR-intervals differences
nni_50 Number of RR exceeding 50ms
pnni_50 Percentual of nni50 over total RR intervals
nni_20 Number of RR exceeding 20ms
pnni 20 Percentual of nni20 over total RR intervals
rmssd RMS ® of RR differences
median_nni Median RR interval
range_nni Max-Min difference

cvsd CV € of successive differences

cvnni Coefficient of Variation
mean_hr Mean Heart Rate
max_hr Max Heart Rate
min_hr Min Heart Rate
std_hr std of Heart Rate

Table 1: List of temporal properties extracted.
a Standard Deviation, ® Root Mean Square, ¢ Coefficient of Variation

’ResBs’s. In each ResBs there were two Convolutional
Layers followed by the SE. The SE block encompassed
two Fully Connected (FC) layers and ended with a sig-
moid function, which transferred the input to the succes-
sive block. This block detected morphological correla-
tions among leads. The Convolutional Layers increased
the number of characteristics extracted by the network
while reducing the input dimensionality, thanks to the dou-
bling of filter dimension every two ’ResBs’s. The dropout
layer placed in between the Convolutional Layers of the
ResBs increased the network generalization capabilities.
The wide branch took as input 16 temporal features ex-
tracted from the ECGs (flow B of Figure [T)) and it con-
sisted of a FC layer of 10 neurons. This limited number
of neurons forced the model to learn an embedding of the
temporal features useful for the classification.

The ResNet capability to recognize the implicit morpho-
logical patterns and the wide branch explicit temporal fea-
tures were put together into a concatenate layer, without
distinction between the two. Since both parts had different
number of parameters, a two-step training procedure was
followed to guarantee correct error back-propagation to the
deep branch (further explained in section[2.4]).
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A sigmoid layer was used as final classifier to return the
recording’s probability values of belonging to each of the
classes independently in the [0,1] range. The classes were
assigned by comparing this output probability with optimal
learnt thresholds (see par. [2.4)).
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Figure 2: Network architecture: on the left (block A) the
deep branch, consisting of the modified ResNet; on the
right (block B) the wide branch, composed of the FC layer.
Their outputs are concatenated to perform the final predic-
tions.

2.4. Model Training

The available full data-set was unbalanced, especially
towards Normal Sinus Rhythm (NSR) and Sinus Brady-
cardia (SB) classes. To avoid bias and enhance the gener-
alization capability of the models, the original distribution
was modified, keeping all data except for the NSR and SB,
which were both randomly reduced to a third.

For each leads subset a model was trained using the
same network structure but changing the number of input
channels. Models were trained in a two-stage fashion for
12 epochs. During the first 9 only the deep network was
trained, freezing the wide layers, while in the remaining 3
only the wide branch parameters were updated. The cho-
sen batch size was 64 and the initial Learning Rate was
0.003, reduced tenfold each 10 epochs. The training error
used was binary cross-entropy, optimized using the Adam
optimizer.

To maximize the Challenge Metric (CM) and handle
class unbalance a threshold optimization [[11]] was applied
to the 26 output probabilities. This was done in two steps:
1. Maximization of the CM score with a step of 0.01 and
maximum value of 0.4 through grid search of threshold
value.

2. Nelder-Mead downhill simplex minimization method
over the negative value of the CM score, initialized with
the output of step 1.

2.5. Model Evaluation

Signals were processed as in the training phase. How-
ever, instead of performing the prediction on a single time
window, signals were segmented into windows of 4096
samples with a 256 samples overlap. The final prediction
probability output was the average across all independently
classified segments. Output classes were assigned accord-
ing to the optimal thresholds found. The model perfor-
mances were assessed holding out a stratified local test set
with 20% of training data. The actual learning of the model
was conducted using a stratified 5-fold cross validation.

3. Results

The results obtained after a 20% hold out 5-fold strat-
ified cross-validation are presented in column “Training”
of Table[2] while Validation” values were provided by the
challenge organizers. No final Test and Ranking scores
were provided due to problems in the run with the UMich
test data, probably due to unexpected characteristics of the
data fed to the model.

Leads Training | Validation
12 | 0.689 % 0.004 0.613

6 | 0.663 £ 0.008 0.585

4 | 0.673 £ 0.006 0.603

3] 0.672+£0.005 0.594

2 | 0.656 £ 0.007 0.582

Table 2: Challenge scores for final entry: 5-fold cross val-
idation on the public training set, repeated scoring on the
hidden validation set. One-time scoring on the hidden test
set as well as the final ranking were not assigned due to
testing error.

4. Discussion and Conclusions

The model presented encompassed two branches: a deep
ResNet SE neural network and a wide single layer hand-
crafted feature classifier. Both branches concatenated to
obtain an embedding of the morphological and tempo-
ral features and to provide with the recording’s probabil-
ity of belonging to each class. The choice of adding a
wide branch was driven by the reported poor capability
of deep models to effectively entail temporal patterns of
the ECG signal [15]. The combination of HRV hand-
crafted features and deep features aimed to take advan-
tage of the implicit complex morphological information
obtained by the ResNet model together with the explicit
rhythmic data of the HRV features. A similar approach
was followed in [16], but in contrast with that procedure
which directly combined handcrafted features with deep
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features, in this work the learning of the wide branch was
performed through 16 handcrafted HRV features (Table|[T)
fed to a FC 10 neurons layer. This was combined with the
ResNet model [[11]], which had already proven in the past
Challenge its efficacy for 12-leads ECGs classification.

In addition, to mitigate overfitting and avoid giving
excessive importance to the wide branch a two phases
learning routine was implemented, as described in section
[2.4] The network was firstly allowed to focus on extract-
ing morphological features by freezing the wide branch
and the end sigmoid classifier, only updating the ResNet
weights. On a second stage the wide branch was trained
by freezing the deep network and preserving the embed-
ding. This approach reduced overfitting, even if it was not
completely removed, as shown in Table[2}

Although no results were obtained for the final full test
set, the performances obtained on one of the hidden test
sets show that the models were capable of classifying
ECGs for every lead subset. Some small differences were
present, presumably due to the loss of information in re-
duced lead subsets, affecting the overall ECG morpholog-
ical patterns. Future works should aim to perform regu-
larization on the wide branch weights and to expand the
number of features to be fed to the wide branch, their pro-
cessing and selection.

In conclusion, the proposed algorithm tackles some of
the complexities of the dataset as the data unbalancing and
variate signal length. However, the lack of an unique ap-
proach in the labelling process of the training data poses a
challenge that should be tackled to increase the robustness
of classification.

Acknowledgments

This project is framed inside MY-ATRIA consortium.
It has received funding from the European Union’s Hori-
zon 2020 research and innovation program under the Marie
Sktodowska-Curie grant agreement No.766082.

References

[1] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, et al. PhysioBank, PhysioToolkit, and Phys-
ioNet: Components of a New Research Resource for Com-
plex Physiologic Signals. Circulation 2000;101(23):e215—
€220.

[2] Perez Alday EA, Gu A, Shah A, Robichaux C, Wong AKI,
Liu C, et al. Classification of 12-lead ECGs: the Phys-
ioNet/Computing in Cardiology Challenge 2020. Physio-
logical Measurement 2020;41.

[3] Reyna MA, Sadr N, Perez Alday EA, Gu A, Shah A, Ro-
bichaux C, et al. Will Two Do? Varying Dimensions in
Electrocardiography: the PhysioNet/Computing in Cardiol-
ogy Challenge 2021. Computing in Cardiology 2021;48:1—
4.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

Liu E, Liu C, Zhao L, Zhang X, Wu X, Xu X, et al. An Open
Access Database for Evaluating the Algorithms of Electro-
cardiogram Rhythm and Morphology Abnormality Detec-
tion. Journal of Medical Imaging and Health Informatics
2018;8(7):1368—1373.

Tihonenko V, Khaustov A, Ivanov S, Rivin A, Yakushenko
E. St Petersburg INCART 12-lead Arrhythmia Database.
PhysioBank PhysioToolkit and PhysioNet 2008;Doi: |10. 1
3026/C2V88N.

Zheng J, Cui H, Struppa D, Zhang J, Yacoub SM, El-Askary
H, et al. Optimal Multi-Stage Arrhythmia Classification
Approach. Scientific Data 2020;10(2898):1-17.

Wagner P, Strodthoff N, Bousseljot RD, Kreiseler D, Lunze
FI, Samek W, et al. PTB-XL, a Large Publicly Available
Electrocardiography Dataset. Scientific Data 2020;7(1):1-
15.

Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG-
Signaldatenbank CARDIODAT der PTB iiber das Internet.
Biomedizinische Technik 1995;40(S1):317-318.

Zheng J, Zhang J, Danioko S, Yao H, Guo H, Rakovski C.
A 12-lead Electrocardiogram Database for Arrhythmia Re-
search Covering More Than 10,000 Patients. Scientific Data
2020;7(48):1-8.

PhysioNet/Computing in Cardiology Challenge 2020. ht
tps://physionetchallenges.org/2020/L Ac-
cessed: 2021-06-08.

Zhao Z, Fang H, Relton S, Yan R, Liu Y, Li Z, et al. Adap-
tive Lead Weighted ResNet trained with different duration
Signals for classifying 12-lead ECGs. In 2020 Computing
in Cardiology Conference (CinC). Computing in Cardiol-
ogy, dec 2020; .

Cabiddu R, Cerutti S, Werner S, Viardot G, Bianchi A.
Modulation of the Sympatho-Vagal Balance during Sleep:
Frequency Domain Study of Heart Rate Variability and
Respiration. Frontiers in Physiology 2012;3:45.

Hrv analysis parameters extraction from rr series. https:
//aura—-healthcare.github.io/hrv-analys
is/. Accessed: 2021-08-27.

of the European Society of Cardiology TF, the North Amer-
ican Society of Pacing, Electrophysiology. Heart Rate Vari-
ability: Standards of Measurement, Physiological interpre-
tation and Clinical use. Circulation 1996;93(5):1043-1065.
Yan G, Liang S, Zhang Y, Liu F. Fusing Transformer Model
with Temporal Features for ECG Heartbeat Classification.
In 2019 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). 2019; 898-905.

Natarajan A, Chang Y, Mariani S, Rahman A, Boverman
G, Vij S, et al. A Wide and Deep Transformer Neural Net-
work for 12-lead ECG Classification. In 2020 Computing
in Cardiology. 2020; 1-4.

Address for correspondence:

Stefano Magni

P.zza Leonardo Da Vinci, 32
Milano(MI), Italy
stefano4.magni @mail.polimi.it

Page 4

Andrea Sansonetti

P.zza Leonardo Da Vinci, 32
Milano(MI), Italy
andrea.sansonetti @mail.polimi.it


10.13026/C2V88N
10.13026/C2V88N
https://physionetchallenges.org/2020/
https://physionetchallenges.org/2020/
https://aura-healthcare.github.io/hrv-analysis/
https://aura-healthcare.github.io/hrv-analysis/
https://aura-healthcare.github.io/hrv-analysis/

	Introduction
	Material and Methods
	ResNet data processing
	Temporal Features extraction
	Model Architecture
	Model Training
	Model Evaluation

	Results
	Discussion and Conclusions

